The Excess Sensitivity of Consumption to Sentiments: Does the PIH hold for India?

19th ISI Annual Growth Conference

Nithin M.¹

Dr. Siddhartha Chattopadhyay ¹

Dr. Sohini Sahu²

December 19, 2024

¹ Department of Humanities and Social Sciences, IIT Kharagpur

² Department of Economic Sciences, IIT Kanpur

Outline

- 1 Introduction
- 2 Data and Model
- 3 Excess Sensitivity

Introduction

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 2/3:

Introduction

- Role of sentiments and Consumption Growth
- PIH/REH explanation of Consumption
- Important question of excess sensitivity to consumption!!
- · use of household level data

Our Paper

We examine **Excess Sensitivity** to Consumption through *Euler Equation* framework To this end, we make use of

- a large dataset with cross-sectional heterogeniety
- we derive a measure of real consumption expenditure
- also make use of household level inflation instead of aggregate inflation
- compare the results for two essential basket of goods: Food and Food and Fuel

Literature

Relationship between Sentiments and Consumption

- **Positive** Acemoglu & Scott (1994), Carroll et al. (1994), Choi et al. (2024), Matasuka & Sbordone (1995)
- Negative Souleles (2004)
- importance of sentiment data in forecasting consumption Lahiri & Zhao (2016), Lahiri et al. (2016)

Our Advanatage over Souleles (2004): Single data

Highlights

- we find presence of excess sensitivity to consumption **positive**
- · violation of PIH
- precautionary motive

Data and Model

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 7/3

- We use novel dataset from CMIE CPHS
- Period: April, 2016 to October, 2022
- Contains demographic as well as information about sentiments in a long pooled data
- Other data we use is the CPI data from MOSPI.
- For sentiments, we use household financial conditions (FP) and economic conditions (BC)
- Expenditure data on 8 Food groups and Fuel and light

Model

We solve the following expenditure minimisation problem to obtain real consumption bundle

minimize
$$e_{h,t}^{j} = \sum_{i=1}^{n} p_{i,t}^{j} c_{i,ht}^{j}; \quad h = 1, 2, \dots, H; \quad j = rural, urban$$
 subject to $c_{h,t}^{j} = \prod_{i=1}^{n} \left(c_{i,ht}^{j}\right)^{a_{i,ht}^{j}}; \quad \sum_{i=1}^{n} \alpha_{i,ht}^{j} = 1;$
$$c_{h,t}^{j} = \frac{k_{h,t}^{j} e_{i,h,t}^{j}}{p_{h,t}^{j}}$$
 (1)

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 9/3

Model (cont.)

$$p_{h,t}^{j} = \prod_{i=1}^{n} \left(p_{i,t}^{j} \right)^{\alpha_{i,ht}^{j}} ; \tag{2}$$

and,

$$k_{h,t}^j = \prod_{i=1}^n \alpha_{i,ht}^j \alpha_{i,ht}^j$$

Next, the generic household h solves an intertemporal problem to decide the time path of consumption.

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 10/35

Model (cont.)

$$\begin{aligned} & \text{maximize} & & E_0 \sum_{t=0}^\infty \beta^t \log \left(c_{h,t}^j \right) \\ & \text{subject to} & & a_{h,t}^j - c_{h,t}^j = \frac{a_{h,t+1}^j}{R_{t+1}}, \\ & & & & a_{h,0}^j = \text{given} \\ & & & \lim_{t \to \infty} R^{-(t+T)} a_{h,t}^j \geq 0 \end{aligned} \qquad \text{(Initial condition)}$$

Under logarithmic utility function, and $\beta = R^{(-1)}$, the Euler equation gives

$$\Delta ln(c_h(t+1)^j) = \delta_{h(t+1)}^j \tag{3}$$

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 11/35

Presence of Heterogeneity

- aggregate price level remains same across all households
- · ignores cross sectional heterogeneity
- we use household specific price level (Equation 2) and household specific y-o-y
 inflation to circumvent this issue

$$\pi_{h(t+1)}^j = \ln \left(p_{h,(t+1)}^j \right) - \ln \left(p_{h,(t+1)-12)}^j \right)$$

 From the measure of real consumption described above, we calculate its growth rate as follows-

$$\Delta \ln \left(c_{h(t+1)}^{j}\right) = \Delta \ln \left(e_{h(t+1)}^{j}\right) + \Delta \ln \left(k_{h(t+1)}^{j}\right) - \pi_{h(t+1)}^{j}$$

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 12/3

Presence of Heterogeneity (cont.)

 we validate the presense of inflation and consumption heterogeneity across demographic characteristics

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 13/3:

Figure 1: Average Inflation Rate among occupational class vis-a-vis CPI

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 14/3

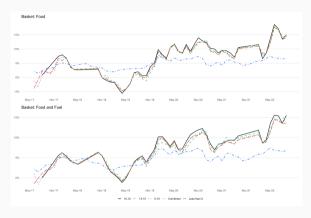


Figure 2: Average Inflation Rate among educational groups vis-a-vis CPI

Figure 3: Average Inflation Rate among age groups vis-a-vis CPI

Figure 4: Average Consumption Growth among occupational class vis-a-vis Aggregate Consumption Growth

Figure 5: Average Consumption Growth among educational class vis-a-vis Aggregate Consumption Growth

Figure 6: Average Consumption Growthamong age class vis-a-vis Aggregate Consumption Growth

Excess Sensitivity

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 20/

Aggregate Consumption and Sentiments

- following Lahiri & Zhao (2016), we calculate an Index of Consumer Sentiments (ICS)
- we use only two components to create the index
- significant co-movement between the household sentiments, and their consumption growth

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 21/35

Aggregate Consumption and Sentiments (cont.)

Figure 7: Index of Consumer Sentiment and Aggregate Consumption Growth

we also calculate correlation matrix

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 22/35

Aggregate Consumption and Sentiments (cont.)

Table 1: Correlation Matrix

	Consumption Growth (Food Basket)	Business Conditions	Financial Conditions	ICS
Business Conditions	0.66***	0.59***		
Financial Conditions	0.62***	0.54***	0.99***	
ICS	0.65***	0.57***	1***	1***

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 23/35

The Baseline OLS Estimation

- PIH predicts consumption growth is unpredictable
- we estimate equation (4)

$$\Delta ln\left(c_{h(t+1)}^{j}\right) = b_{0}time + b_{1}W_{h(t+1)} + b_{2}Q_{h(t+1)}^{j} + \eta_{h(t+1)} \tag{4}$$

- · we assume consumption growth is not random; instead depend on
 - the aggregate shocks (like Covid-19 shock or government policy shocks) that uniformly affects all households
 - the preference shocks, $W_{h(t+1)}$ that varies across households and over time
- we use time dummies to control for aggregate shocks and following Souleles (2004) and Ludvigson (2004) futuristic sentiments of the households to control for preference shocks

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 24/35

The Baseline OLS Estimation (cont.)

- We use household's own financial position (Q_{FP}) , and the overall business condition (Q_{BC}) as the measures of their sentiments in our baseline estimation
- A significant, b_2 signifies the presence of the excess sensitivity of consumption to sentiments among Indian households.

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 25/35

The Baseline OLS Estimation (cont.)

Table 2: OLS Estimation for Food

	(1)	(2)	(3)
Q_{FP}	0.009***		0.03***
	(0.002)		(0.003)
Q_{BC}		0.003***	
		(0.002)	
FE_{FP}			0.027***
			(0.002)
Age			
	0.000***	0.000***	0.000***
	(0.002)	(0.000)	(0.000)
Δ kids	0.011***	0.011***	0.011***
	(0.012)	(0.012)	(0.012)
Δ adults	0.038***	0.038***	0.039***
	(0.002)	(0.002)	(0.002)
Time Dummies	Yes	Yes	Yes
Number of Observations	58,871	58,871	53,312

The Baseline OLS Estimation (cont.)

Table 3: OLS Estimation for Food and Fuel

	(1)	(2)	(3)
Q_{FP}	0.054***		0.023***
	(0.002)		(0.003)
Q_{BC}		0.003***	
		(0.002)	
FE_{FP}			0.023***
• •			(0.002)
Age			-
	0.000***	0.000***	0.000***
	(0.002)	(0.000)	(0.000)
Δ kids	0.07***	0.07***	0.06***
	(0.002)	(0.002)	(0.003)
Δ adults	0.028***	0.002***	0.029***
	(0.002)	(0.002)	(0.002)
Time Dummies	Yes	Yes	Yes
Number of Observations	58,871	58,871	53,312

The Baseline OLS Estimation (cont.)

Note: : (i) Age represents the age of the household head, (ii) Δ kids, and Δ adults represent change in number of kids, and change in number of adults respectively, (iii) FE represents forecast errors of the financial position, (iv) ***, **, * represent significance at 1%, 5%, and 10% level respectively.

- results imply contraditcion of PIH and also precautionary savings motive
- results in line with previous studies based on aggregate data (Acemoglu & Scott, 1994; Carroll et al., 1994) and differes from micro study of Souleles (2004)

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 28/35

The GMM Estimation

- Souleles (2004) uses GMM, negative \boldsymbol{b}_2
- the household sentiments explained by their demographic characteristics, location, and income matters the most; instead of the raw sentiments itself (also, Blendon et al., 1997)

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 29/35

The GMM Estimation (cont.)

Table 4: GMM Estimation for Food

	(1)	(2)	(3)
Q_{FP}	0.555*** (0.00)		0.476*** (0.00)
Q_{BC}		0.345*** (0.038)	
FE_{FP}			0.53*** (0.00)
Age	- 0.001*** (0.000)	- 0.001*** (0.000)	-0.001 (0.96)
Δ kids	0.009 (0.37)	-0.007 (0.009)	0.017 (0.012)
Δ adults	0.018 (0.46)	0.041** (0.021)	0.009 (0.71)
Time Dummies	Yes	Yes	Yes
Number of Observations	58,871	58,871	53,312

The GMM Estimation (cont.)

Table 5: GMM Estimation for Food and Fuel

	(1)	(2)	(3)
Q_{FP}	0.695***		0.602***
	(0.030)		(0.030)
Q_{BC}		0.661***	
		(0.037)	
FE_{FP}			0.613***
			(0.061)
Age			
	0.001***	0.001***	0.001***
	(0.000)	(0.000)	(0.000)
Δ kids	0.010	-0.015	0.017
	(0.012)	(0.012)	(0.012)
Δ adults	-0.342	-0.010	-0.056**
	(0.026)	(0.026)	(0.027)
Time Dummies	Yes	Yes	Yes
Number of Observations	58,871	58,871	53,312

The GMM Estimation (cont.)

- importance of household demographics, and their neighborhood to shape their sentiments as argued by Blendon et al. (1997)
- positive sign of the excess sensitivity parameter re-establishes the absence of the precautionary savings motive among the Indian households

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 32/35

The Spurious Excess Sensitivity - The Role of Forecast Error

- possibility of spurious excess sensitivity
- we contol for stong assumption that aggregate shocks hit all people equally
- Souleles (2004) find that forecast errors in sentiment variables are unsystematic and varry with demographics
- we use forecast errors of the sentiment variables to augmnet Equation 4 to check for spurious excess sensitivity

$$\Delta ln\left(c_{h(t+1)}^{j}\right) = b_{0}time + b_{1}W_{h(t+1)} + b_{2}Q_{ht}^{j} + b_{3}FE_{PC,ht} + \omega_{h(t+1)} \tag{5}$$

- for PIH to hold, we expect $b_2 = 0$ and $b_3 > 0$
- our results however contradict PIH and add robustness to our baseline results

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 33/35

The Spurious Excess Sensitivity - The Role of Forecast Error (cont.)

- we observe excess sensitivity more significant for own sentimemt variable compared to aggragte sentiment variable
- some excess sensitivity still persists and is not due to hetrogeneity in forecast errors alone

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 34/35

References

- Acemoglu, D., & Scott, A. (1994). Consumer confidence and rational expectations: Are agents' beliefs consistent with the theory? *The Economic Journal*, 104(422), 1–19. http://www.istor.org/stable/2234671
- Blendon, R. J., Benson, J. M., Brodie, M., Morin, R., Altman, D. E., Gitterman, D., Brossard, M., & James, M. (1997). Bridging the gap between the public's and economists' views of the economy. *Journal of Economic Perspectives*, 11(3), 105–118. https://doi.org/10.1257/jep.11.3.105
- Carroll, C. D., Fuhrer, J. C., & Wilcox, D. W. (1994). Does Consumer Sentiment Forecast Household Spending? If So, Why? *The American Economic Review*, 84(5), 1397–1408. http://www.istor.org/stable/2117779
- Choi, S., Jeong, J., & Yoo, D. (2024). How to interpret consumer confidence shocks? State-level evidence. *Economics Letters*, 244, 111985. https://doi.org/https://doi.org/10.1016/j.econlet.2024.111985
- Lahiri, K., Monokroussos, G., & Zhao, Y. (2016). Forecasting Consumption: The Role of Consumer Confidence in Real Time with many Predictors. *Journal of Applied Econometrics*. 31(7), 1254–1275. https://doi.org/10.1002/iae.2494
- Lahiri, K., & Zhao, Y. (2016). Determinants of Consumer Sentiment Over Business Cycles: Evidence from the US Surveys of Consumers. Journal of Business Cycle Research, 12(2), 187–215. https://doi.org/10.1007/s41549-016-0010-5
- Ludvigson, S. C. (2004). Consumer confidence and consumer spending. Journal of Economic Perspectives, 18(2), 29–50. https://doi.org/10.1257/0895330041371222
- Matasuka, J. G., & Sbordone, A. M. (1995). Consumer confidence and economic fluctuations. *Economic Inquiry*, 33(2), 296–318. https://doi.org/https://doi.org/10. 1111/j.1465-7295.1995.tb01864.x
- Souleles, N. S. (2004). Expectations, Heterogeneous Forecast Errors, and Consumption: Micro Evidence from the Michigan Consumer Sentiment Surveys. *Journal of Money, Credit, and Banking*, 36(1), 39–72. https://doi.org/10.1353/mcb.2004.0007

write2nithinm@iitkgp.ac.in ACEGD-19, ISI-Delhi, 2024 35/35

